翻訳と辞書
Words near each other
・ Reflection group
・ Reflection high-energy electron diffraction
・ Reflection lines
・ Reflection loss
・ Reflection map
・ Reflection mapping
・ Reflection nebula
・ Reflection of Joey's Live
・ Reflection of Something
・ Reflection principle
・ Reflection principle (disambiguation)
・ Reflection principle (Wiener process)
・ Reflection Riding Arboretum and Botanical Garden
・ Reflection seismology
・ Reflection symmetry
Reflection theorem
・ Reflectional receiver
・ Reflections
・ Reflections (1984 film)
・ Reflections (1987 film)
・ Reflections (1999 film)
・ Reflections (2005 film)
・ Reflections (A Retrospective)
・ Reflections (After 7 album)
・ Reflections (Akira Terao album)
・ Reflections (Andy Williams album)
・ Reflections (Apocalyptica album)
・ Reflections (B.B. King album)
・ Reflections (Bliss n Eso song)
・ Reflections (Bobo Stenson album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Reflection theorem : ウィキペディア英語版
Reflection theorem

:''For reflection principles in set theory, see reflection principle.''
In algebraic number theory, a reflection theorem or Spiegelungssatz (German for ''reflection theorem'' – see ''Spiegel'' and ''Satz'') is one of a collection of theorems linking the sizes of different ideal class groups (or ray class groups), or the sizes of different isotypic components of a class group. The original example is due to Ernst Eduard Kummer, who showed that the class number of the cyclotomic field \mathbb \left( \zeta_p \right), with ''p'' a prime number, will be divisible by ''p'' if the class number of the maximal real subfield \mathbb \left( \zeta_p \right)^ is. Another example is due to Scholz.〔A. Scholz, Uber die Beziehung der Klassenzahlen quadratischer Korper zueinander, ''J. reine angew. Math.'', 166 (1932), 201-203.〕 A simplified version of his theorem states that if 3 divides the class number of a real quadratic field \mathbb \left( \sqrt \right), then 3 also divides the class number of the imaginary quadratic field \mathbb \left( \sqrt \right).
==Leopoldt's Spiegelungssatz==
Both of the above results are generalized by Leopoldt's "Spiegelungssatz", which relates the p-ranks of different isotypic components of the class group of a number field considered as a module over the Galois group of a Galois extension.
Let ''L''/''K'' be a finite Galois extension of number fields, with group ''G'', degree prime to ''p'' and ''L'' containing the ''p''-th roots of unity. Let ''A'' be the ''p''-Sylow subgroup of the class group of ''L''. Let φ run over the irreducible characters of the group ring Q''p''() and let ''A''φ denote the corresponding direct summands of ''A''. For any φ let ''q'' = ''p''φ(1) and let the ''G''-rank ''e''φ be the exponent in the index
: (A_\phi : A_\phi^p ) = q^ .
Let ω be the character of ''G''
: \zeta^g = \zeta^ \text \zeta \in \mu_p .
The reflection (''Spiegelung'') φ
*
is defined by
: \phi^
*(g) = \omega(g) \phi(g^) .
Let ''E'' be the unit group of ''K''. We say that ε is "primary" if K(\sqrt()\epsilon)/K is unramified, and let ''E''0 denote the group of primary units modulo ''E''''p''. Let δφ denote the ''G''-rank of the φ component of ''E''0.
The Spiegelungssatz states that
: | e_ - e_\phi | \le \delta_\phi .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Reflection theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.